资料

LED道路照明灯具散热系统分析

上传人:张万路,江磊,江程,陈郁阳,刘木清

上传时间: 2011-05-30

浏览次数: 334


  


图:单位功耗对应散热面积与灯具散热效果之间的关系

  通过分析表1数据,并结合图4可以发现,散热面积越大,器件的结温上升会越小,但是二者并不成简单的比例关系,这说明各样品散热器的效率并不是一样的。尤其是3号样品,其单位功耗对应的散热面积和4号样品差不多,但是其LED结温上升却比4号样品高5℃左右,这证明其散热器的效率比4号样品要差很多。分析3号样品的散热结构可以发现,其散热片的高度为15mm,但是其散热片之间的间距仅为4mm,也就是说相对其散热片高度,两个散热片之间的距离很小,形成一个很窄沟槽,而这种沟槽里的空气很难与外界的空气流通,这样就会影响灯具外表面的对流系数,从而影响灯具整体的散热效率。

  4、主动式散热

  主动式散热主要是通过水冷、风扇等手段增加散热器表面的空气流动速度,以便快速带走散热片上的热量,从而提高散热效率。具体到本文的等效模型中,就是通过增加对流系数h,以降低散热片与大气之间的热对流内阻,从而降低LED芯片的PN结温升。对于LED道路照明灯具,考虑到道路照明灯具的使用环境及防护要求,一般选用风扇作为增加对流的手段。

  为了证明风扇的散热能力,做了如下试验:选用两个能耗密度比较高的灯具样品,分别在有风扇和无风扇的情况测量包括LED芯片结温以及散热片温度等在内的各个温度参数。考虑到道路照明灯具通常为IP65防护灯具,而风扇则需要更高的防水防尘等级,因此预计以后市场化的LED照明灯具产品中的风扇应该是封闭在灯具内。因此在测量样品时,我们将装有风扇的灯具放在一个封闭的金属腔体内。在采集实验数据时,除了采集灯具中LED芯片的结温,我们还用两个温度探头,分别读出灯具散热器和金属空腔外壳的温度以做参照,具体测试数据见表2。

  


表:有、无风扇时样品各部分的温度

  通过对比表2列出的测试数据可以发现,在加了风扇之后,两个样品的LED芯片的温度分别下降了3217℃和3613℃,相比没有风扇时,结温有了大幅度的下降,这说明增加风扇的确在很大程度上改善了灯具的散热性能。从表2可以发现,温度明显下降的主要是LED芯片的结温和灯具散热片的温度,包围灯具的金属腔的温度在加了风扇之后并没有明显的变化,这是因为加了风扇之后,只不过是增加了散热器表面的空气流动速度,增加了对流系数,从而降低了对流的热阻,但是LED芯片产生的热量要散出去还是要通过封闭的金属腔外壳,而灯具产生的热量是一定的,所以通过金属腔外表面散出的热量也是一定的,无论我们怎么改变里面的风扇风速,金属腔外表的温度变化应该是不大的。

  5、结论

  本文针对目前LED 道路照明灯具常用的两种散热模式选取了一些样品,对其各部分温度进行了系统科学的测试。通过对测试数据的分析,并结合LED灯具热学分析模型,具体分析了影响灯具散热效率的各方面因素,从而为设计高散热效率的LED灯具提供指导,对推动LED在道路照明中的应用具有重要意义。

| 收藏本文
最新评论

用户名: 密码: