LED道路照明灯具散热系统分析
上传人:张万路,江磊,江程,陈郁阳,刘木清 上传时间: 2011-05-30 浏览次数: 334 |
2、路灯灯具热学分析模型
要想分析路灯的热学传导模型,首先要选出温度基准,就是我们要最终分析和控制的温度指标。现在市场上很多LED灯具产品给出的温升指标大部分都是基于灯具外壳的温度相对于环境温度的差异,用这种方法来衡量灯具散热性能存在着一定的局限性。因为与LED器件性能直接相关的是其PN结的结温,我们关心的最终指标是结温的高低。不同灯具在LED光源选取、灯具材料使用、生产工艺以及散热设计等各方面都有很大不同,导致从LED的PN结到灯具外壳的热阻有很大的差异。在这种情况下,用灯具外壳温度相对环境温度的温升来判断灯具的散热性能是不科学的。我们必须通过一定方法测量出芯片的结温,然后通过结温的变化来衡量灯具散热设计的优劣。
综合考虑道路照明的各项要求,以及路灯的在配光、机械、防护等级等各方面的要求,目前应用在LED道路照明灯具中的主要散热方式有两种:第一种是被动式散热,即通过安装散热片来散热。这种方式结构简单,但散热效率比较低;第二种是主动式散热,即通过外加风扇或者水冷等方式来散热,这种方法散热效率比较高,但是需要额外的功耗,会降低系统效率,并且设计难度很大。
这两种散热方式各有优缺点,做出的灯具产品结构大不相同,但是综合灯具设计的各方面因素以及结合LED自身的特点考虑,目前LED灯具核心的结构还是基本相同的,既选用1W左右的LED焊接在铝PCB板上,然后将PCB板通过合适的分布方式固定在灯具外壳上,再依靠外壳将热量散出去。因此,其热量的流动大概可以简单归结为如下过程:先是经过焊接层将热量传给固定LED的铝基板,然后铝基板导热胶将热量传给灯具外壳,再通过灯具外壳传导给各个散热片,最后靠散热片与空气间的对流将热量散出。整个过程可以用如图3所示的等效热阻模型来表示。
图:LED路灯灯具等效热阻模型示意图
热量的传递主要有三种方式:热传导、热对流和热辐射。通过图示分析可知,LED路灯灯具在散热过程中主要是利用传导和对流来散热,因此灯具热学系统的热阻也就可以主要分为两种:传导型热阻和对流型热阻。对于传导型热阻,其阻值R=ΔxPKA;对于对流型热阻,其阻值R=1PhA。其中:K是材料的导热系数,h是对流系数,A是导热面积。
通过图3可知,如果想将LED产生的热量迅速传递到大气环境,需要经过的传导热阻包括LED器件与铝基PCB板焊接层之间的焊接热阻、铝基PCB的热阻、铝基PCB板与灯具外壳之间的导热硅胶层热阻、以及灯具外壳的热阻。由于焊接以及涂硅胶的工艺都有可能产生气泡,引入空气热阻,并且这种气泡是包围在焊接层与硅胶内部的,很难与外界气体进行交流,所以这部分热阻可以看作空气传导热量的传导热阻,而不是对流热阻。
通过前面的公式我们可以看出,要降低各部分的热阻,在材料选定的情况下,应尽可能降低材料的厚度。铝的导热系数K=202WPm·℃,镍的导热系数是93WPm·℃,而空气的导热系数是01024WPm·℃,因此,为降低连接层的热阻,就要尽可能减少焊接层和硅胶层中的气泡。以下结合两种具体的散热方式来分析灯具的散热设计。
3、被动式散热
被动式散热就是依靠灯具自身的外表面与空气的自然对流将LED产生的热量散出。这种散热方式设计简单,并且很容易和灯具的机械结构设计结合起来,这就比较容易达到灯具的防护等级要求,并且成本较低,因此是目前采用最广泛的一种散热方式。但是这种散热方式也有缺点,就是散热效率不高,并且设计出的灯具因为有大量的散热片而导致灯具过重。同时由于散热片的存在,使得灯具外壳比较容易积灰,会降低灯具的维护系数。
为科学地分析这种散热的方式的散热效率,我们选取了几种采用这种散热方式的LED道路照明灯具,每个样品在同一封闭房间内(保证空气的对流系数相同)燃点3h(确保灯具已达到热平衡)后,测量其结温,为消除室温波动的影响,我们在分析时采用相对温度,即稳态结温与室温的差值来衡量灯具的散热效果,具体数据见表1。
表:采用同类散热方式的灯具散热效果比较
为衡量灯具的散热效率,灯具的输入功率以及机械参数也列在表1中。其中散热片面积是整个灯具的有效外表面面积(不包括前端玻璃的面积),单位功耗对应的散热面积由散热片面积除以灯具的输入功率得出,此指标用来衡量灯具的散热效率。为了更直观的反映单位功耗对应散热面积与灯具结温变化即灯具散热效果之间的关系,我们将这两项指标做成散点图,如图4所示。
用户名: 密码: