资料

CIE与IEC的LED参数测量标准

上传人:吕正

上传时间: 2008-04-30

浏览次数: 2208

  引言

  LED 技术虽然已经有40 多年的发展历史,在产业界依然存在LED 光学参数测试再现性差,测量不确定度大,不同测试装置之间的测试结果一致性差等现象[1~3 ] 。究其原因,如同国内对LED 产业存在多头管理,国际上也一样: 国际半导体设备与材料组织(SEMI) ,国际电工委员会( IEC) 和国际照明委员会(CIE) 都程度不同地涉及到LED ,尤其是后两个委员会。正是由于LED 的相关测量标准是由国际上不同的标准化组织制定的,而且各个国际组织总体上没有系统的规划,相关组织间也没有充分协商,因而存在不同的质量评价体系,所颁文件的技术内容也不尽相同。IEC 成立于1906 年,它把LED 作为一个显示用半导体器件处理,侧重于它的物理特性。CIE 成立于1913 年,它更多地把LED 作为一个光源器件处理,所以导致各自的LED 测量标准之间存在微小的差异。本文试图通过比较各自的标准,找出两者的不同之处,以便为LED 测试方法标准的最终定稿提供一些参考。

  1  CIE 和ICE 对同一事件的不同表述

  1.1  发光(辐射) 效能的定义

  首先,必须修正对这个术语的误解,发光(辐射)效率(efficiency) 用在此文中是不妥的,因为效率是指无量纲的物理量,而此处是有量纲的。所以,正确的叫法是“发光(辐射) 效能(efficacy) ”。

  发光(辐射) 效能的定义:

  CIE 定义:LED 发出的光通量(辐射通量) 与耗费电功率之比。

  IEC 定义:LED 发出的光通量(辐射通量) 与耗费正向电流之比[4 ] 。

  评论:CIE 的发光效能要测3 个物理量:总光通量,正向电流,正向电压(或内阻) 。而IEC 只需测量两个物理量:总光通量、正向电流。它没有选择正向电压是很明智的,因正向电压会随管芯温度的升高而下降。作者认为,IEC 的定义是不够严谨的。因为即使对于同一批次的管芯和封装,管芯的内阻及端电压存在微小差异,所以仅适用于对发光(辐射) 效能允许有一定变动范围的情况。这样测试时间将缩短,因只需测量两个物理量。

  1.2  发光强度的测量距离

  CIE[5 ] 规定了发光强度的测量距离有两种:远场(条件A) 为316mm ,对应的立体角为01001Sr ; 近场(条件B) 为100mm ,对应的立体角为0101Sr :两者之间可以相互转换,远场测量结果乘以10 就得到近场测量结果。

  IEC[6 ]规定的测量距离仅为近场(条件B) ,立体角< 0101Sr ; (为什么不写等于0101Sr ?) 。

  对测量距离,CIE 明确规定从LED 的外壳顶端到光探测器的灵敏面。而IEC 规定得比较模糊。

  评论:表面看起来,远场测量比近场测量有时候不确定度要小,因为在此条件下对测量距离、电流和杂散光的要求可相对低一些。但同时,LED 安装倾角的影响却相对增大,这可是一个大误差源。一般而论,远场条件可适用强照明及封装产品,而近场条件适用于弱照明和芯片、指示灯和背光源等。故均有存在的必要性。其次,CIE 在逻辑上不够严谨。首先,它用很大篇幅说明了LED 不是点光源,故距离平方反比定律不成立,发光强度这个概念也不适用。另外在实践上,它实际上是测量LED 在光电探测器灵敏面上的照度,然后乘以距离的平方而得到发光强度。这样,曾经被否定的距离平方反比定律实际上仍用到了。

  1.3  测量的外部条件

  CIE 明确规定测量的环境温度为25 ℃,但没提及大气条件。

  IEC 则在笼统地提到环境温度的同时,也强调了适宜的大气条件。

  评论:根据作者长期对硅光电二极管深入研究的经验,LED 参数与大气条件诸如大气压、湿度、洁净度等有关是肯定的,只是尚未做这方面的实验来予以证实。

  2  IEC 提及却被CIE 遗漏的内容

  2.1  CIE 没有提到LED 辐射强度的测量,这实际上是一个非常重要的物理量

  IEC 则用较大篇幅提到这一点。其一,指出辐射强度的测量定位应是机械轴方向(法向辐射强度) ;其二,提到要用无光谱选择性的探测器如热电偶堆等热电探测器作为标准探测器:其三,提到要用近场测量。辐射强度对红外发光二极管( IRED) 尤其重要。

  2.2  CIE 没有提到脉冲测量

  既然市场上有“闪光LED”,闪光频率约为113~512Hz ,所以必须有相应的测量方法。

  IEC 规定,对闪光LED 的测量,光探测器的上升时间应该足够小,而且应该能读取脉冲的峰值。

  IEC 规定,为了测量峰值波长的带宽,单色LED的波长分辨率和带宽应能够调节,以便测量有足够的精度。辐射计的光谱响应进行校正,不妨假定峰值波长为100 % ,以便作归一化处理。IEC 指出,若单色仪的透射因子和辐射计的灵敏度在所测量的波长范围内不是常数,则要对测量值做相应的修正。[NT:PAGE]

  2.3  CIE 没有提到LED 暗电流的测量

  IEC 强调指出,LED 暗电流的测量对温度非常敏感,所以测量精度极大地依赖于环境温度。另外,杂散光也是一个因素,测量最好在全黑环境下进行。工作电流也必须从零开始慢慢往上调节。

  2.4  CIE 没有提到总电容测量时的频率

  由LED 和光晶体管组成的光耦合器,LED 在其中起着开关作用。其抗干扰能力比一般方法强。电容测量仪的最小分辨率≮1PC ,而电容的测试频率规定为1MHz ,这对LED 总电容的测量可能有借鉴作用。

  现行标准只笼统地提到“规定频率”一词,到底用多大频率测量总电容尚无规定。

  2.5  CIE 没有提到LED 的开关时间

  IEC 明确提到了光耦合器的开关时间。如上升时间tr ,开启时间ton ,关闭延迟时间td ,下降时间tf ,关闭时间toff 等。

  3  CIE 提及却被IEC 所遗漏的内容

  与上节相比,这方面的内容就太多了,故只能点到为止。

  3.1  LED 的性质

  3.1.1  LED 的光学性质

  ●发光强度的空间分布强调了对芯片的封装经常会改变它原来的光谱和空间分布。

  ●相对于其它光源而言,LED 的光谱分布既不是单色的(与激光束比) ,也不是宽带的(与白炽灯比) 。

  ●LED 的发光面积,由于包装和透镜、反光镜等的不同,而有不同的尺寸和形状。与测量距离相比,LED 的发光面积大到不再是点光源。

  3.1.2  LED 的电学性质

  ●正向电压:它的精确测量最好用4 线测量方法,而随着管芯温度的上升正向电压会下降。由于LED管芯发热的作用,刚开启的时候,辐射功率上升的速度快于电功率的上升。而到了平稳工作期间,LED 的光辐射又强烈地依赖于正向电流。

  ●由于温度和电压之间的复杂关系,不推荐用稳定的电功率作为稳定的LED 光输出功率的前提。

  ●正向电压与组成LED 的半导体材料相关:在正向电流20mA 的前提下,红外管的端电压是112V ,蓝光管为615V ,其它的管子在这个范围以内。

  ●CIE 规定,测量时的环境温度为25 ℃,但供给LED电源的接触点,管芯和热沉之间引线的长度和电阻均会显著地影响测量结果。

  ●CIE 也提到辐射效率是电流的函数。因为工作电流的增加不但会增加LED 光功率的输出量,而且会提高芯片温度,后者反过来又会影响到LED 的光功率输出。如果对工作电流进行调制,则芯片温度会产生起伏现象,导致在同样的电流下,平均光功率输出不等于稳态下LED 的光功率输出。

  ●恒电流和一个温度稳定的电压将导致LED 有一个稳定的电功率消耗。不过须注意,不控制温度上升的电功率稳定将会导致一个非常不同的LED 运行条件。辐射的相对功率分布将影响如下两个方面:一是它将轻微地改变光强分布的形状;二是当温度上升时,整个分布将显著地朝长波方向移动(但蓝光LED一般是向短波长方向移动) 。

  3.1.3  温度对辐射的影响

  ●表面看起来,不变的电流电压似乎能提供LED 一个恒定的电功率。然而,如果不控制温度则不可能得到稳定的光功率输出。原因是:LED 的相对功率分布一方面会随温度而发生轻微的改变,另一方面当温度上升时,整个分布将朝长波方向漂移(对蓝光LED 则向短波方向漂移) 。

  ●只要温度存在着变化,则LED 发出的辐射通量也总处于变化状态中,即效率(efficiency) 在变化。对绿色单色管而言,因它处于∨(λ) 曲线的峰值附近,故而变化小一些。对红光和蓝光单色管而言,因处于∨(λ) 曲线的尾部,则变化要大一些。

  ●管芯温度升高的速率依赖于输入的电功率和LED 封装产品的热容。在热平衡以后管芯的温度主要取决于管芯通过引脚向环境的散热。因此,LED 结构的热学性能、引线长度和热沉三者决定了管芯温度。

  ●在高的环境温度下,当电流固定时,正向电压会下降。而对此进行调整以稳定LED 的电功率消耗会影响芯片的温度,从而影响LED 的端电压。因此,电功率的稳定不能作为一种改进LED 光功率输出的手段。

  3.2  误差的产生原因

  因为LED 的机械轴和光轴很少会重合, 加上LED 发光的面积、形状、尺寸和结构总存在差别,故很难确定LED 的发光中心,从而导致角度和位置两方面对准的困难,增加了测量的不确定度。

  3.3  光电探测器的性质

  CIE 推荐使用“硅光电二极管”,选用标准主要有两个:一是面响应均匀性,即灵敏面上各点输出的测试信号均相同;二是响应与被测光的入射角无关。

  3.4  LED 的发光强度测量

  ●LED 不是点光源,距离平方反比定律不适用。

  ●因为LED 没有真正意义上的发光强度,折衷之下提出“平均发光强度”的说法。

  ●规定远场(条件A) 为316mm ,对应的立体角为0.001Sr 。相应的平面角为2°。规定近场(条件B) 为100mm ,对应的立体角为0.01Sr。相应的平面角为615°。两者之间可用10 倍关系相互联系。

  3.5  光通量的测量

  ●变角光度计法:以LED 的顶部为假想球心,光电探测器与LED 的距离为假想球半径,然后把此假想球面分成N 个部分,假设每一部分的照度相同,则积分或累加后很容易得到总光通量。这是最准确的绝对测量方法,缺点是测量时间长。

  ●积分球法:这是一个相对测量仪器,故必须事前对其定标。为了消除LED 自吸收的误差,CIE 建议用一个辅助LED 插入积分球内同时测量。[NT:PAGE]

  3.6  光谱量的测量

  ●与别的标准不同,CIE 增加了“中心波长”的概念:即波形半宽度的中间点所对应的波长。这样就解决了许多单色管的配光曲线在法向方向凹进去的波长描述的困惑。其它如主波长、峰值波长和质心波长各种标准中均有提及,此略。

  ●对质心波长要特别注意:由它的定义和公式可知,它强烈地受制于LED 光谱分布的形状。即使光谱形状有非常小的改变(尤其在紫外和红外处) ,均可显著地改变质心波长的位置。

  4  对CIE 和IEC 提出的一些建议

  4.1  关于硅光电二极管灵敏面的面积

  CIE 规定:灵敏面的面积为100mm2 (相应的直径为Φ1.13mm) ,且灵敏面必须是圆形。国产硅光电二极管由于质量原因目前不宜使用,那么国外产品呢?日本滨松HamamatsuS1337 无窗系列的硅光电二极管的灵敏面尺寸为10 ×10 (mm2 ) ,并且美国UDT公司和EG&G公司所制的硅光电二极管也大致为上述尺寸。若选用10mm 作为光电探测器灵敏面的直径,则相应的灵敏面面积仅为7815mm2 , 比CIE 的规定要小2.15mm2 ,面积减小20 %以上,造成量值的混乱。若用S6337 无窗系列, 它的灵敏面面积为18 ×18(mm2 ) ,取1.13mm 作直径太浪费。而且S1337 的价格1 000 元/ 只,而S6337 的价格为4 500 元/ 只。故此强烈建议CIE 把光电探测器灵敏面的直径改为10mm。

  4.2  关于光电探测器的光谱灵敏度和∨(λ) 滤光器的匹配精度

  两者的匹配结果应符合CIE1924 年颁布的明视觉函数曲线,其偏差一般用f1 表示。CIE 要求f1 <1.5 % ,这样太苛求了。因为目前世界上∨(λ) 滤光器做得最好的是德国,f1 为1.5 %。目前, ∨(λ) 滤光器国内的水平受制于材料(有色中性玻璃) 和工艺条件,只能做到4 %~5 %。根据国情, 我们认为f1 定为2.2 %比较适合。

  4.3  关于单色管发光强度光谱分布的带宽

  在测量LED 的辐射强度时,带宽是一个重要的因子,而相应波形下的面积即是单色管的总光通量。但提及光谱分布必须涉及到单色仪。实质上单色仪是波长可变的滤波器。根据滤波理论,输出信号是输入信号和仪器本身传递函数的卷积,只有去除了这个卷积,才能得到正确的波形。所以单色LED 通过单色仪时,带宽必然增加,俗称“仪器加宽”。这个现象只有用狭缝函数[7 ] 才能正确处理。至于光栅加线阵CCD 的LED 色度仪,其仪器加宽效应更加明显,在此不予讨论。此外,建议CIE 规定单色仪入P出射狭缝的宽度,因为波形的带宽与此也密切相关。

  4.4  色温修正

  考虑到发光强度的国家基准和总光通量的国家副基准大多数为2 856K的A 光源作为标准灯,而LED的色温目前普遍在4 000~7 000K之间,所以必须进行色温修正,修正量一般为3 %左右。色温修正的前提是必须知道所用光电探测器的光谱响应曲线。

  5  结束语

  由于标准的制定远远跟不上LED 产业发展的步伐,导致国内外的测量标准(草稿) 满足不了产业界的要求。限于水平,虽然有不少谬误之处,笔者仍希望此文有助于正式标准的制定。

  参考文献

  1  吕正.LED 发光强度测量中的若干问题. 北京:中国照明电器,2004(11) :20~22

  2  吕正. 从LED 的配光曲线谈起. 北京:中国照明电器, 2004 (10) :1~4

  3  吕正.LED 发光强度测量中的若干误区. 北京:中国照明电器,2005(12) :11~14

  4  鲍超.LED 测试技术和标准研究开发. 大会发言,上海,2004. 7

  5  Measurement of LEDs. CIE 12721997.

  6  Optoelectronic devices2Measuring methods. IEC 607472523 , 1997208.

  7  Self2study manual on optical radiation measurement . NBS , Tech. 91024 ,1979.

| 收藏本文
最新评论

用户名: 密码: